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a b s t r a c t

The accurate recognition of impact craters is important to analyze and understand the relative dating of
Martian surface. Since manually identifying small craters in a deluge of high-resolution Martian images
is a tremendous task, a robust automatic detection algorithm of the crater is needed, but subject to lots
of uncertainties and low successful detection rates. In this paper, a modified adaboosting approach is
developed to detect small size craters on Mars. First, we construct a dual-threshold weak classifier based
on the characteristics of the feature value distribution instead of the single threshold classifier. Second,
we adjust the criterion of updating weights in the process of training. The small craters on Mars are
autamatically detected based on the modified algorithm using the images from the High Resolution
Stereo Camera (HRSC) onboard Mars Express with a resolution of 12.5 m/pixel. A high threshold with
0.85 is determined, and the true detection rate of small size craters on Mars is improved by almost 10%
when compared to the original method. The true detection rate can be obtained as high as 85% with only
10% false detection rate. Therefore, the modified adaboosting method has greatly improved the detecting
performance of the crater and reduced the detection time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Impact craters are among the most noticeable geomorphological
features on the planetary surface (e.g., Jin et al., 2013). It is important
to detect and analyze the size frequency distribution because it is the
only tool to survey the relative age of the geologic formation on the
planetary surface (Crater Analysis Techniques Working Group, 1979).
The criterion is simple that the heavily cratered surface is considered
to be relatively older than the less cratered surface. According to
previous research (Tanaka, 1986), the size frequency distribution of
craters are always assumed to be approximated by the power law.
Crater counting is a common and paramount approach for the
planetary surface analysis. Many databases were built by means of
visual inspection of images, which are spatially comprehensive but
contain only the larger craters over the whole Mars (Barlow, 1988;
Rodionova et al., 2000). Furthermore, it is a really time-consuming
and laborious work to manually build a comprehensive crater catalog
(Robbins and Hynek, 2012), and therefore it is necessary to develop
an automatic crater detection algorithm to recognize the crater.
Although a number of crater detection algorithms (CDA) have been

proposed (Salamuniccar and Loncaric, 2012), but they did not satisfy
the high precise requirement due to the lack of great identification
ability. In particular, with a wide range of craters size (from a few
meters to thousands of kilometers), the craters on the planetary
surface were normally determined by the degree of the degradation,
internal morphologies and the degree of overlapping with other
craters. Most craters have distinct conservation conditions varying
from fresh state to old appearance with seriously eroded rims,
which is a real challenge for the identification of craters from other
geomorphologies. In addition, the diverse geomorphological set-
tings and image illumination conditions make it more difficult to
discriminate, even with visual inspection.

On the Martian surface, there are always rare large craters but
abundant small craters. Previous crater catalogs of large craters on a
global scale were constructed by visual inspection (Andersson and
Whitaker, 1982; Kozlova et al., 2001), but it took a huge work load.
For example, the most comprehensive crater catalogs were built
by Barlow (1988) and Salamuniccar and Loncaric (2008a), which
contained 42,283 craters and 57,633 craters with diameter of larger
than 5 km. Most of them focused on the detection of craters with
large size on areas without complex geomorphological features, but
sometimes it was not precise enough to be landmarks for spacecraft
in autonomous navigation (Leroy et al., 2001). With increasing
demands of the smaller craters detection on more complex
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planetary surface conditions, millions of smaller craters on Martian
surface are waiting to be identified from images at higher and
higher spatial resolution.

There are two general kinds of the automatic detection meth-
ods: supervised and unsupervised approaches (Stepinski et al.,
2009; Ding et al., 2011; Troglio et al., 2012). Many unsupervised
algorithms are based on pattern recognition techniques and crater
rims are identified as circular objects in an image (Leroy et al.,
2001; Kim and Muller, 2003; Bandeira et al., 2007). The machine
learning technique, training of classifiers for discriminating craters
from non-craters, is utilized in supervised approaches. The unsu-
pervised algorithms are always fully autonomous but less accurate
than supervised approaches. In addition, most previous studies
based on the unsupervised algorithms relied on the inefficient
pixel-based approaches, which may detect some large craters but
have low possibility to detect small craters from high resolution
planetary image with billions of pixels. The supervised algorithms
are normally feature-based approaches, which require a set of
well-chosen features and effective criteria with high discrimina-
tive power. From previous researches, no hand-made or defined
patterns can make a big difference in distinguishing craters from
non-craters. Therefore, machine-learning algorithms are useful for
crater detection (Wetzler et al., 2005).

An unsupervised method, template matching of probability
volume, was introduced for the recognition of impact craters
(Bandeira et al., 2007), which was employed in the detection of
craters on Mars Orbiter Camera images. Based on the characteristic
shapes of craters, it was proposed that small craters can
be detected efficiently (Urbach and Stepinski, 2009). The detection
percentage is about 70%, which is not enough for detecting
small craters. To avoid some disadvantages of optical images, an
approach based on DEM data was presented by Bue and Stepinski
(2007), but it has a worse performance in the recognition of craters.
Currently, the effective algorithm, Adaptive Boosting, has been well
used in automatically detecting craters (Martins et al., 2009; Ding et
al., 2011; Bandeira et al., 2012), but it still has some limitations in
detection efficiency and small size craters. In this paper, a modified
adaboosting approach is developed to detect small size craters on
Mars, which is aimed at improving the performance and efficiency of
detecting craters. In Section 2, the algorithm and method are
presented, Section 3 shows the test results, and finally conclusions
and future works are given in Section 4.

2. Algorithms and methods

The traditional algorithm was first introduced in the detection
of craters by Martins et al. (2009), which was used in the field of
face recognition (Viola and Jones, 2004). It is a boosting algorithm
that relies on the strong classifier with a sequence of weak
classifiers to discriminate craters from non-craters.

2.1. Crater and non-crater candidates

The algorithm of the craters detection is a machine-learning
algorithm, which needs to select candidates for machine learning in
the training process. The face training set can be extracted randomly
from the face dataset, which are direct and useful samples for
classification between face and non-face images (Viola and Jones,
2004). However, no complete dataset can be used for the selection
of crater candidates. Moreover, the crater appearance on the image
results from illumination angle, surface properties and atmospheric
state, which may result in that the feature of craters from one type
of images cannot well represent the craters from another type.
Therefore, we should make sure that the image block of candidates
has the same image quality with the test image. Therefore the

candidate images and the test images are of the same data source
from the High Resolution Stereo Camera (HRSC) onboard Mars
Express. Each crater candidate is a square image block with a fixed
size, whose width can be set with a dimension of the same as the
diameter of the crater. All the candidates will be extracted from the
overall image with more than tens of thousands craters in the entire
scene in order to have best ability to discriminate craters and non-
craters in the image. Considering the variability of craters shapes,
400 crater candidates and 400 non-crater candidates are chosen in
the training process.

First tens of crater and non-crater candidates are manually
selected from the test area image as the input data for this machine
learning algorithm, which can be easily done with visual identifica-
tion. To avoid too much false detections, the relatively large thresh-
old value will be used in the algorithm. After quickly scanning the
image, enough image blocks with positive and negative detections
will be obtained so that candidates are with the same image quality
as the test area.

2.2. Haar-like feature extraction

The Haar basis functions were first proposed for the detection
of objects (Papageorgiou et al., 1998) and then popularized in the
context of fast face recognition, which were the fundamental and
vital part for our feature extraction. The features are built by using
a family of binary masks, whose numerical values are calculated as
an attribution to distinguish craters from non-craters. The Haar-
like features are different kinds of rectangular regions with various
sizes and consisted of two kinds of sectors (white sector and black
sector). By setting the feature mask in the prepared image block,
we can obtain the feature value by subtracting the sum of
grayscale values of the pixels covered by the white sector from
the sum of grayscale values of the black sector. A mask is scanned
within the region of a crater candidate in different scales. Thus
more than 60,000 features will be assembled in a mask with
24�24 pixel by an arrangement of the sectors and placement
within an image block. These features are over-complete and even
redundant for the classification between craters and non-craters
objects. The craters with circular shapes are always identified in
a symmetric pattern. In order to reduce the computational com-
plexity, we use only square mask-features because in general we are
aimed to detect round craters characterized by their distinct rims.

According to Martins et al. (2009), 10 types of mask-features
are used in this algorithm with different patterns in Fig. 1. For the
implementation of extracting the features from the candidates, all
of the candidates will be resized to a standardized size of
24�24 pixel, which is the smallest size that we can detect in
the tested image. For the first nine features in Fig. 1, four different
sizes are used, i.e., 6�6, 12�12, 18�18 and 24�24, respectively.
Each is separated by a third of mask size. Then there are 1089
features for each candidate of these nine patterns. The last feature
is based on the circular shape of craters. 324 more features will be
added when the side lengths of the two inside squares vary with
a step size of 2 pixel.

2.3. Feature selection and classification

Given a set of features and a training set of crater and non-
crater candidates, a number of weak classifier can be built to
classify candidates into craters and non-craters. The main steps of
the traditional algorithm are briefly described as the following:

1) Initialize weights w1;i ¼ ð1=2mÞ; ð1=2nÞ, where m and n are
the number of craters and non-craters in the training set,
respectively;
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2) For t¼1 to T, where T is a desired number of most discrimina-
tive weak classifiers;

3) Normalize the weights, wt;i ¼wt;i=∑mþn
j ¼ 1 wt;j;

4) For all the used features, the weak classifier is selected with
satisfying the criterion of minimum weighted classification
errors as εt ¼minf ;p;θ∑iwt;ijhðCi; f ; p;θÞ�cij, where ci ¼ 0 or
1 for craters and non-craters examples, respectively, and htðCÞ ¼
hðC; f t ; pt ;θtÞ is a weak classifier that will be discussed in
details later;

5) Update the weights, wtþ1;i ¼wt;iβ
1� ei
t , where ei ¼ 0 if the

candidate is classified correctly, and ei ¼ 1 if the candidate is
classified incorrectly, where βt ¼ εt=ð1�εtÞ;

6) End;
7) The final strong classifier is given by:

HðCÞ ¼ crater if ∑T
t ¼ 1αt � htðCÞ4 μ�∑T

t ¼ 1αt

non� crater otherwise

(
;

where αt ¼ log ð1=βtÞ and μ is a threshold probability.

2.4. The modified weak classifier

In the traditional algorithm, a sequence of weak classifiers was
generated and combined to assemble a strong classifier through
a weighted boosting approach. A set of weak classifiers htðCÞ ¼
hðC; f t ; pt ;θtÞ is defined as:

hðC; f ; p;θÞ ¼ 1 if p� f ðCÞZp� θ
0 else

(
ð1Þ

where C is an image block representing a crater candidate and f is
the numeric value of each feature. The discriminative power of the
weak classifier is determined by the threshold θ and a polarity
variable pA 1; �1f g, which means that the feature value should be
larger or smaller than the threshold. In fact, each single weak
classifier always identifies candidates into craters with a low
confidence because of its low discriminative power. However, in
each round of the training process a best weak classifier will be
selected with the minimum weighted errors. If all these weak
classifier has an ability of correct classification with a detection
rate of higher than 0.5, the final strong classifier can perform well
by combining many weak classifiers.

Fig. 2 shows the proportion of crater and non-crater candidates
in all candidates when the feature value increases. Considering the
distribution of the sum weight of all the candidates, we can
conclude that the feature value of crater candidates distributes
in a relatively narrow interval when compared to non-crater
candidates. Only a single side threshold to determine craters will
result in some false results, like the non-crater candidates with
very high or low features. Therefore, the classifier with
a dual-threshold is constructed for the detection. It can be easily

proved that smaller classification errors will be obtained when
a weak classifier with a dual-threshold is employed, which is
introduced in the following:

hðC; f ;θ1;θ2Þ ¼
1 if θ1r f ðCÞoθ2

0 else

(
ð2Þ

therefore we should find these two thresholds in the next step, as
the following:

1) According to the distribution range of the numeric value of the
features, we will divide the ranges into some intervals to
calculate the sum weight of craters g(x) and non-craters ng(x);

2) For each interval xi, we can subtract ng(x) from g(x) and get
h(x)¼g(x)�ng(x);

3) After obtaining the value of max (h(x)), the xmax corresponding
to h(x)max can be found. On the left and right side of xmax, x1
and x2 can be got to satisfy the equation: h(x)¼0. In fact, the
function h(x) is not continuous, so the requirement cannot be
satisfied strictly. Therefore, the value of x will be selected when
h(x) vary from the negative to the positive or the positive to the
negative. The classification errors can be minimized when we
use x1 and x2 as two thresholds.

2.5. Weight updating

According to the method of updating weights proposed in
AdaBoost (Freund and Schapire, 1995), the weights of incorrectly
classified candidates are increased and the weights of correctly
classified candidates are decreased so that incorrectly classified
examples will be of greater possibility to be chosen for calculating
the sum weighted error in the next iteration. Now it has been
popularly used in crater detection algorithms (Martins et al., 2009;
Ding et al., 2011; Bandeira et al., 2012). However, when the
examples are correctly classified, they are not given enough
weighs in the weights updating process. To bring down the rate

Fig. 2. The distribution of the sum weight of the candidates.

Fig. 1. Ten types of mask-features.
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of false or negative detection, we adjust with the weight factor
αt so that the weak classifier can be trained to be more sensitive in
positive detection. The modification for weights updating is as
following:

wtþ1ðiÞ ¼
wtðiÞ
zt

�
e�αt ; htðxÞ ¼ ci
eαt ; htðxÞaci

(
ð3Þ

zt ¼ ∑
T

i
wtðiÞ � eαt�ð�1Þflag ; αt ¼

1
2
ln

1�εt
εt

� �
þept ð4Þ

where zt is the normalization factor, αt is the weight factor, and
pt is the sum weight of all the correctly classified candidates in
t round. The flag is equal to 0 when htðxÞaci is satisfied,
otherwise the flag is equal to 1.

3. Performances and analysis

3.1. Dataset and evaluation methods

In order to detect small craters on Mars based on the modified
algorithm, we choose the panchromatic image from the High Resolu-
tion Stereo Camera (HRSC) onboard Mars Express with a resolution of
12.5 m/pixel. One complete HRSC image contains hundreds of millions
pixels, which is a really time-consuming work for mannual detection.
Here four images from HRSC covering different areas are selected to
test automatic detection performace of impact craters based on the
modified algorithm. To correctly validate the detection results, we
have mannualy selected these craters ranging from 300m to 2500m
on these areas. We cannot detect craters as small as a few pixels
without visual inspection, and the craters with diameter from 24 pixel
to 200 pixel are reliably detected by this algorithm. The performance
of our crater detection algorithm is evaluated by the framwork from
Salamuniccar and Loncaric (2008b). The quality factors are normally
utilized to evaluate our method (Shufelt, 1999). The computation of
true detection rate(TDR) and false detection rate (FDR) is given by the
followings:

TDRð%Þ ¼ TD
GT

� 100% ð5Þ

FDRð%Þ ¼ FD
TDþFD

� 100% ð6Þ

where TD is the number of true detection, GT is the total number of
detected craters in the gound truth image and FD is the number of
falsely detected craters. As our algorithm is a feature-based approach,
which requires a number of pixels to constitute features within
a image block. The smaller limit of the detected crater size is 24 pixel,
and the largest detected craters is 200 pixel.

3.2. Performance and discussion

As an important indicator in the training process, the weighted
classification error is a key factor to evaluate the performance of
the weak classifier and make a difference in the process of
updating weights. After applying the dual-threshold weak classi-
fier instead of the single threshold one, the weighted classification
errors have been degraded greatly (Fig. 3).

Fig. 4 shows the top 10 mask-features in the training phase
with the modificated algorithm. All the features are ranked by the
important factor α, which has correlation with the classification
errors. We can select the minimum required number of features
from the ranked features. Note that almost the top 10 features
appear to focus on detecting the rim of the craters, which confirms
our idea that the boundary between the light and shadow part of
a crater is the most important feature for the detection of craters.

When we set μ¼ 0:85, the performances of the two approaches
are shown in Fig. 5. The roughness of the surface really affects the
detection results, which results in some missing detections and
false detections. Furthermore, the consuming time from the
improved method is also reduced a little.

By using the series of weak classifiers from the training set, we
finaly build a strong classifier for the classification. The detections
will be automatically evaluated as true or false craters by comparing
with the manually built true results. There are 1055 ground truth
craters in the selected areas for the test. By setting different thresh-
olds, we can obtain the detection performance with comparing to the
ground truth catalogue. It is clearly seen that the performance varies
with the change of the threshold. When a lower threshold is
determined in the classification, the higher true detection rate
(TDR) and false detection rate (FDR) are obtained at the same time.
It can be easily understood that a low threshold determines more
obsecure detections, including potential true detection and fase
detection. The detection results show a better performance when
compared to previous work. The detection rate of template matching
(Bandeira et al., 2007), shape features analysis (Urbach and Stepinski,
2009), and Hough transform (Bue and Stepinski, 2007) are 86%, 70%
and 64%, respectively. Obviously, the template matching method has
the best TDR in these three methods. However, the false detection
rate of template matching method is about 16%, and the modified
method has higher TDR with about 90% if the FDR is close to 16%. To
understand the relation between the threshold and detection rate,
several different threshold values are chosen in the test. In Table 1, it
has shown that both TDR and FDR fall with increasing the threshold
value, but FDR has sharper decrease than TDR. When the FDR
decreases from 40% to 10%, the TDR has only 12% decrease with still
as high as 85%. At the same time, the modified method shows
a better performance than the original method at different thresh-
olds. Especially when the threshold value is set as 0.85, the TDR has
an improvement of about 10% when compared to the original
method, but no big change of the FDR. Obviously, the choice of the
threshold value should be made according to the tradeoff between
the TDR and FDR, which can be of good ability in the true detection
of impact craters. We can improve the TDR when the modified
approach is applied in the detection. Therefore, the modified algo-
rithm has improved the performance of the crater detection.

The TDR has been significantly improved by 10%, while the FDR
has less than about 2% change (Table 1), which confirms the
effectiveness of the modified algorithm. However, some factors can
contribute to a decrease of the TDR, such as the distribution of the
sampling craters and homogenity of the test region. The weak link of
this algorithm is the uncertainty of selecting crater candidates, which

Fig. 3. The weighted classification errors.
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needs abundant samples to overcome it. If all ground truth craters
are covered by the candidates, it can reduce the uncertainty but also
consume more time. In addition, the realistic scenario of obtaining
samples for the training set is from the spatially limited region, so the
performance of the algorithm depends on the similarity of the crater
candidates with the training set. In the future, the technique of
transfer learning (Dai et al., 2007) will be further incorparated into
the algorithm in the modification of the training set.

4. Conclusion

In this paper we present a modified algorithm to detect small-size
craters on Mars. The dual-threshold weak classifier based on the
characteristics of the feature value distribution is constructed instead

of the single threshold classifier and the criterion of updating
weights is adjusted in the process of training. The small craters on
Mars are autamatically detected and tested based on the modified
method using the images from the High Resolution Stereo Camera
(HRSC) onboard Mars Express with a resolution of 12.5 m/pixel.
Results show that the modified algorithm can improve performance
in detecting small craters on Mars. A high threshold with 0.85 is
determined, and the true detection rate of small size craters on Mars
can be improved by almost 10%. Therefore, the modified adaboosting
approach is effective to improve the performance of the small size
crater detection and reduce the detection time. In the future, more
data are needed to further test and analyze.
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